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The influence of drift flow turbulence on 
surface gravity wave propagation 
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(Received 3 December 1991 and in revised form 2 September 1993) 

The theory of surface gravity waves scattering at vortex flows in the ocean is developed 
in this paper. A scattering amplitude is found in the Born approximation as a function 
of vorticity which appears very convenient for investigation of scattering at simple 
localized flows. It is shown that the wave scattering cross-section is determined by the 
vertical component of vorticity. For a random (turbulent) vortex field the scattering 
cross-section per unit volume is determined by a vorticity correlation function. The 
damping of the coherent wave component and the angular spectrum widening are 
calculated for multiple scattering by vortex turbulence of drift flows. The spectrum 
angular width evolution for waves scattered at self-similar vortices of the logarithmic 
boundary layer is determined only by its dynamical speed and the wave vector. The 
latter result may be used for a remote sensing of oceanic turbulent drift flows based on 
observations of surface waves. 

1. Introduction 
Vortex flows of various scales are among most important natural factors influencing 

surface gravity waves in the ocean. Flow fields of synoptic and meso-scale vortices 
produce considerable refraction and other effects on waves propagating from any 
generation area (Phillips 1984; Hayes 1980; Sheres & Kenyon 1990). Small-scale 
vortices generated by upper-layer convection, shear flow instability or wave breaking 
also play an important role in surface wave dynamics (see, for example, Monin & 
Ozmidov 1981 ; Longuet-Higgins 1992). 

But some of physical mechanisms for the influence of subsurface vortices on gravity 
wave propagation are still unclear. For example, the effect of wave damping in 
turbulence has been treated before in terms of turbulent viscosity (see Kononkova 
1969; Kitaigorodskii & Lumley 1983), but the estimations of a wave decrement 
obtained in such a fashion are rather discrepant : they lead to very different values and 
fail to reveal physical features of the processes taking place. 

Here we wish to consider the phenomenon of surface wave scattering at subsurface 
vortices. First we investigate wave scattering at a localized vortical area. Then 
scattering by vortex turbulence is considered with special attention to the turbulence 
of wind drift flow. 

The effect of surface wave scattering by turbulence was first investigated by Phillips 
(1959). Some results concerning gravity wave scattering by spatially homogeneous and 
horizontally isotropic turbulence were obtained by Raevsky (1983) and Sazontov & 
Shagalov (1985). But it is obvious that more realistic models should take into account 
the vertical inhomogeneity of subsurface turbulence. 

-f Present address : Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak 
Grove Drive, Pasadena, CA 91109, USA. 



142 A .  L. Fabrikant and M.  A .  Raevsky 

Turbulence in an ocean can be caused by various factors : internal waves, wind wave 
breaking and so on (see Phillips 1977; Monin & Ozmidov 1981). We wish to emphasize 
however that subsurface turbulence caused by wind drift flows is one of the most 
important forms of turbulence that influences surface waves. Note that the interaction 
with drift flow turbulence is an inherent effect for wind waves, whereas turbulence of 
any other origin is an incidental factor whose random appearance is not caused by 
wind. Besides, the effect of drift turbulence on the damping and scattering of swell 
propagating through a storm area is also of considerable interest. 

A wind drift flow appears near a sea surface mainly under the influence of a 
tangential wind stress. The features of this flow are quite similar to those of a turbulent 
boundary layer on a solid surface (see Wu 1975; Jones & Kenney 1977; Lin & 
Gad-el-Hak 1984). In particular, at a depth greater than the viscous-layer thickness 
and up to the external turbulence scale L, (which is usually determined by stratification 
or by the Ekman scale) the logarithmic boundary layer (LBL) approximation is valid, 
which has self-similar properties (see, for example, Phillips 1977). Here we consider 
surface gravity wave scattering by vertically inhomogeneous turbulence of the LBL. 
This problem has not been investigated before but it seems to be important for wind 
wave and swell dynamics. 

2. Basic equations 

free surface z = c(x,  y )  and at the bottom z = - H :  
We use equations for an ideal incompressible fluid and boundary conditions at the 

-+v - + - + g z  = Vx[Vx V], 
a V  at (;2 :: ) 

v.v=o, (1 b)  

Z+(V,.V,) ac 5 = V,(Z = 0, P(Z = <) = 0, V,(Z = - H )  = 0. (1 c-e) 

V = ( K , G , K ) ,  V=(K&O), v ,=  G'@ . (" a 1 Here 

To investigate waves of small amplitude propagating on a background flow we 
consider the fluid motion as a superposition of an undisturbed vortex flow U(r) (in 
particular, it can be turbulence with given statistical properties) and a perturbation 
caused by a surface wave : 

where v(r), 7 and p" are wave fields of the velocity, surface displacement and pressure. 
The following approximations will be used below. 
(i) Small wave amplitude. We will develop below a linear surface wave theory and so 

we can neglect terms of the form u-v. Linearized equations for infinitesimal wave 
perturbations on a vortex flow background have the form: 

V = U + v ,  C = h + r ,  p=P-pgz+P,  (2) 

-+v - +(v.V) U+(U.V)v = 0, :; t) (3 4 

a7 a u z  av --v,(z = O ) + ( U , . V , ) 7 - - ~  = -(v,.V,)h+Ah, 
at az a Z  
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(3 d )  

(3 el 

aP 
aZ P(z = O)-pgh = --h, 

vz(z = - H )  = 0. 

(ii) Small Froude number. In calculating wave scattering by turbulence we take into 
account that the value of typical turbulent speed fluctuations U is usually small in 
comparison with the phase speed of gravity waves u p  = (g/k) i  and so the Froude 
number is also small: 

(4) 
(iii) Quazi-static approximation. We assume the turbulent vortex flow to be much 

slower than the wave motion and, therefore, if their space scales are the same, the ratio 
of turbulent frequency 0, to the wave frequency is small: 

F = k U z / g  4 1. 

0, 4 w .  ( 5 )  
The condition ( 5 )  makes it possible to consider wave scattering by turbulence in the 

quasi-static approximation, i.e. to take into consideration the time dependence of 
turbulent velocity only in the final expressions. This condition is always valid if the 
Froude number of a flow is small enough: F 4 1 for vortices with a distance scale 1 
greater than the wavelength A. Vortices with scales 1 < +A do not participate in resonant 
wave scattering. 

(iv) Subsurfaceflow under a rigid boundary. The undisturbed flow is described by the 
system of equations 

ah 
-+(Ul*V,)h = U,(Z = 0)+ 
at 

p(z = O)+K] h = pgh, 
z=o 

UZ(Z = - H )  = 0. (6 el 
Using condition (1) we can neglect in (6) the terms containing time derivatives. In this 
approximation (6a)  and ( 6 d )  lead to the following relations: 

P - pU2, h - U 2 / g ,  k ,  h - F. (7) 
Here k, = 27c/L, is the characteristic size of vortices. 

Also, it follows from (6b)  that 

(8) 
au 
-- - -(V,. U,). 
az 

U,(Z = 0 )  - k ,  hU - FU - k ,  U3/g .  

Substituting (8) into (6c)  we find that 

(9) 
If the Froude number is small (in the limit U+O) it follows from (9) that 

U,(z = 0) 4 U,  and we can use in this approximation the boundary condition: 

UZ(Z = 0) = 0. (10) 
Thus to a first approximation in the Froude number the background vortex flow can 
be considered as a flow near a rigid boundary at z = 0. 
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Under the approximations given above we can neglect the right-hand sides of (3) and 
rewrite them in the following form: 

-+v - = - ( v . V )  u - ( U . V ) v ,  :; t) 

p”(z = 0) -pgq = 0, 

vz(z = - H )  = 0. 

If U = 0 the right-hand sides of (1 1) equal zero and we have a system of equations 
describing free propagation of small surface waves. Non-zero terms on the right-hand 
sides of (1 1) determine the influence of an arbitrary subsurface vortex flow (but taking 
into account the approximations (4) and ( 5 )  on a surface wave propagation). 

To calculate this influence it is convenient to use Fourier transformation of (1 1). We 
define the Fourier amplitudes as 

pk = Jfi(r)exp(-ik.r)d’r, ( 1 2 4  

vZk = v(r) exp (- ik. Y) d2r, (12b) 

(12 c) 

s 
s y k  = ~(r)exp(-ik.r)d’r, 

where Y = (x,y) is a two-dimensional vector, and index k designates the amplitudes of 
eik.r harmonics. It can be found from (1 1) that 

d t2  = - [ ;$k)+2(UL.v ,v , ) , ]  z=o . 

To find f i k / p  we use (1 1 a), which leads to the equation 

where 

n= v; (V’VJ U + ( U . V , ) v + v , - +  u,- [ au a Z  aZ 

Note here that we use the approximation of small Froude number and so we may 
neglect all terms containing higher powers of the vortex velocity U in equations for 
surface waves. Taking into account boundary conditions at z = -H ,  we find from (14) 
to a first approximation : 

fi = A cosh [k(z + H ) ]  - nk sinh [k(z - z’)] dz’. (16) 
P 
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Now we substitute (15) 
perturbation velocity u and 
integrating by parts and tak 
find 

into (16) and use the continuity equations for the 
for the background velocity U ((11 b) and (6b)). After 

ing into account the boundary conditions at z = - H we 

pk = A cosh [k(z+ H)] 
P 

sinh [k(z - z')] [V,( ( u  . V,) U +  ( U .  V,) u 

+ U(V,-U)+V(V,. U))],dz' 

+2~Hcosh[(k(z-z')] [(u'V,) Uz+(U.V,)vz],dz'. (17) 

It follows from (17) that 

- 2[((u * OL) uz + ( u* vL> Vz>klz=O. (18) 
The condition (9) allows us to omit the last term [ ( ( ~ ~ v ~ ) v z } k ] z = ~  in (18). 

Substituting (1 8) into (1 3) and using (1 1 d) to express (p",/~),,~ in terms of qk we arrive 
at the equation 

+ ik sinh [k(z + H)] [((k - k') - uLr) Uz,,-,, 

+(k'' uL(k-k')> v z k l l ,  (19) 
where w i  = gk tanh (kH) .  

Confining ourselves to the first approximation we should take the velocity amplitudes 
Vk to be of zero order in the vortex velocity U,  corresponding to a free plane potential 
wave : 

dyk sinh [k(z + H)] ik av,k 
v,, = - , v l k = 3 - .  

dt sinh ( k H )  k i3z 

Substituting them into the right-hand side of (19) and then taking into account the 
incompressibility condition 

which is found from (8), we have from (19) 
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1 
2 sinh (k'H) cosh (kH) 

Al(z, k,  k') = 

cosh[(k-k')(z+H)] , (23) 
x [ ( l + ~ ) c o s h [ ( k + k ' ) ( z + H ) ] -  1 

sinh [(k - k') (z + H)] 1 
2 sinh (k'H) cosh (kH) 

A,(z, k ,  k') = 

sinh[(k+k')(z+H)] . (24) 1 
The integro-differential equation (22) derived in the first-order approximation to 

F; = kU/w, is convenient for the investigation of surface wave scattering at a 
quasi-static vortex flow employing a perturbation method. 

3. The scattering amplitude for surface gravity waves 
Now let us calculate in the Born approximation the scattering amplitude for a wave 

in a vortex flow in a given volume. We can calculate the scattering of waves with 
various scales (wind waves, swells, tides, tsunamis, etc.) by any arbitrary distributed 
dynamical vortices in an ocean of finite depth. Here we confine ourselves to the 
investigation of some special cases. To make the first Born approximation we 
substitute into the right-hand side of (22) the expression corresponding to a 
monochromatic plane incident wave : 

vk' = (2n)2 qo exp (-iwt) 6(k' - k,), (25) 

where w2 = gk,. It implies that the incident wave is scattered only once. Thus we have 
the first-order scattered field amplitude : 

The space distribution of gravity waves is determined with the poles w2 = w i  in (26). 
The integration path in the complex plane of k, for the reverse Fourier transform is 
defined by causality and must turn round the pole wk = w in a direction opposite to 
clockwise. Integrating along this path we have from (26) 

Here k, = (k,,, kv), k,,(k,) = (k2-ki):, and k = ko. We have taken into account that 
for k, = k,, A ,  = 0. 

Using the stationary phase method one can obtain from (27) an asymptotic form for 
a scattered wave in the far field when kr 9 1: 

Here 
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is the scattering amplitude. The scattered field ~ p )  depends upon the radius vector in 
the horizontal plane r = (x, y) .  And the scattering vector k ,  is directed along the radius- 
vector k ,  = k, r/r. 

Now we can find ( k ,  + k,) .  U,(k,-ko), which the integrand in (29) is proportional to. 
It is convenient to expand the horizontal turbulent velocity U ,  into two components: 
a vortical velocity that is determined by the vertical component 52, of vorticity 
0 = rot U, and a potential component that is determined by U,: 

Here q = k ,  - k,, q = 2k, sin GO), and n, is the vertical unit vector. This expansion leads 
to an equation 

One can see from ( 3 1 )  and (29) that when k, = k, the scattering amplitudeflk,, k,) 
is determined only by the vertical component of vorticity. This circumstance seems to 
be rather useful from the experimental point of view because exploration of 52, requires 
measuring only horizontal velocity components. 

Substituting ( 3 1 )  and (23),  where k’ = k,  and k = k,, into (29),  we find 

k0 22 k ,  x k,].n,) 
f(ks’ ko) = 2(dw/dk) [&I ( i k ,  - k,)’ 

For shallow water waves (H+ 0) the scattering amplitude (32)  has the same form as 
for sound waves scattered at two-dimensional vortices (see Fabrikant 1983) : 

where 

~ k , * k 0 2 ( [ k ,  x k,]-n,)  - 
.Aks’ ko) = 2(gH): % k,k, (k,-k,)2 ‘z(k,-k,,) 2 [“I ( 3 3 )  

(34) 

is simply the vertically averaged vorticity. This result seems to be quite evident due to 
the analogy of shallow-water approximation with two-dimensional acoustics (Landau 
& Lifshits 1987). 

For deep-water waves (H-t  co) we have from (32 )  

where 

(36)  

(37) I(r) = 2k, J H  dzQ,(r). ezkoz 



148 A .  L. Fabrikant and M .  A .  Raevsky 

We can see from (35) and (37) that only subsurface distribution of the vertical vorticity 
up to the depth IzI < lI, = k;' determines surface wave scattering in deep water. 

Below, our discussion is confined to the deep-water waves, taking into account the 
possibility of a generalization for a finite depth. 

4. Scattering at localized vortices 

introduce the scattering angle 6' by the relation 
First, let us consider some general properties of the scattering amplitude. We can 

and rewrite (35) in the following form: 

The formula (39) is very convenient for investigation of scattering at simple localized 
vortex flows with given vorticity distribution Qz(r, z). 

One can see from (39) that there is no backward scattering: for 6 '=  n: we have 
f( - k,, k,) = 0. The scattering at small angles (6' = 0) depends on the value of circulation 
around the vortex 2 n : ~  averaged along the scattering layer, where 

= 2k, @, [ $U,(r, z) dl] ezkoz dz. 

If I(k,-ko=O) $. 0 the scattering amplitude has a singularity (a pole) at 0 = 0. This pole 
is due to a slow decrease (cc r-') of the velocity U, when r + 00 so that even far-distant 
rays are refracted in this kind of flow field. 

The vorticity field may be expanded into a multipoles series 

P =  r.I(r)d2r (42) s 
is the dipole moment of vorticity in the scattering layer. In the long-wave 
approximation when the typical horizontal size of a vortex is small compared to the 
wavelength (k,, L 4 1) we may confine ourself to the first non-vanishing term of the 
series (41). If the total flow vorticity I(k,-ko=n) + 0, the vortex flow can be replaced in 
the first approximation by a point vortex with circulation 2 7 ~ ~ .  Then the scattering 
amplitude has the form 

(43) 

Therefore, the scattering of long waves is determined by the vortex oscillations as a 
whole and does not depend on the vortex inner structure. Note that (43) is an accurate 
formula for the scattering amplitude at a vertical vortex line whose length is large in 
comparison with the wavelength. 

f = [2n:/ig]ii~k, cot (:0) (1 + cos 0). 
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For vortex flows without circulation when I(k,-ko=O) = 0 the scattering amplitude has 
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the form 

where 0, is the direction angle of the incident wave. The functionf(0) is finite in this 
case for all angles 8. 

We supposed above an arbitrary flow vorticity distribution I(r). The only condition 
on this function is its fast decreasing when 111 + 00 so that Fourier transformation leads 
to the finite function I(ks-ko). 

Now we consider an axially symmetrical vortex with the Fourier-transformed 
vorticity depending only upon k = IkJ. To calculate we use polar coordinates 
with the polar axis directed along the vector k. Then we have 

I k  = Jr J r I ( r )  eikrcos*r d$ dr = 27t rJ,(kr) I(r) dr. f (45) 

This integral is finite if I(r) decreases like r-' (where s > g) when r + 00. 

Ik = 27tBR; exp (- k2Ri) and the scattering amplitude (39) has the following form : 
For the Oseen vortex with vorticity I(r) = 2Bexp (- r'/R;) we have from (45) 

Some useful results can be found for surface wave scattering using a point vortices 
model for the averaged undisturbed flow vorticity I(r). Approximation of a fluid flow 
by a system of point vortices has been widely used before (see, for example, Batchelor 
1970). It would be quite natural to make an analogy (kinematical, at least) between 
point vortices in fluid dynamics and point charges in electrodynamics. But there is a 
significant difference between these two. Wave scattering in a point vortex flow is 
determined not only by the vortex core but also by the refraction in the flow velocity 
field that stretches far away from the core. As has been noted before, this leads to a 
peculiarity in the scattering amplitude for small angles. On the other hand, the point 
charge Coulon field does not influence the electromagnetic wave scattering due to the 
linear superposition principle in electrodynamics. 

Now we calculate the scattering amplitude for some simple systems of point vortices. 
In particular, for a 'double vortex' - a pair of point vortices with equal circulations K, 
that rotates around a centre between them with the frequency 4, = 2 ~ / d '  (d is the 
distance between vortices) - we have the formula for coordinates of these vortices : 

ri = (+dcos(Q,t+i.n),~dsin(O,t+i.n)), i = 1,2. (47) 

The scattering amplitude has the form 

f (6) = i/c(2ni/g)ik0(l + cos 0) cot (+8) 

= i/c(2xi/g)tkO(l + cos 0) cot 

x cos {+ko d[(cos 0-cos 0,) cos 4, t + (sin 0- sin 0,) sin 4, t]} 

x (- 1)" Jm(k, dsini(0- 0,)) cos [m(4, t-+(0+ e,))], (48) 
m 
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where 8, is the incident wave vector angle. We can see from (48) that a wave field 
scattered from this oscillated flow includes an infinite spectrum of combined harmonics 
with frequencies o f m O ,  (rn = 0, 1,2,. . .). 

For a vortex pair with opposite circulations that moves along the x-axis with the 
speed V = K / d  we have 

and the scattering amplitude is 
ri = {Kt,(-l)’&T), i =  1,2, (49) 

,Re) = - K( - 2ni/g)i k,( 1 + cos 8) cot ($8) 

. (50) x sin [ik, d(sin 8- sin e,)] ei~oV(coso~cosoo)t 

In the frame of reference confined to the vortex pair and moving with the velocity V 
the flow is steady and the scattered wave frequency equals the incident wave frequency. 
For a moving observer the latter frequency is 

Therefore the scattered wave frequency in a fixed frame of reference differs from the 
incident wave frequency and the difference is the Doppler frequency shift: 

k V  
Aw = W ~ C O S ~ ’  

0 

calculated in the first approximation (compare to Fabrikant 1983). 

5. Scattering by homogeneous turbulence 
Now we investigate a turbulent background flow that has no mean vertical vorticity : 

(a,) = 0. (53) 

Let us consider a turbulent volume confined by an area of size L in the horizontal 
plane. Suppose the turbulence statistics are horizontally homogeneous inside that area 
and so the correlation function may be written as 

(Q,(r’, z’) Q,(r”, z”)) = Q(r’ - r“, z’, z”). (54) 

The latter condition may be approximately satisfied for Ir’--r’’l < L, < L if the area 
size L is large enough and outside some boundary layer of width equal to the 
correlation length L,. 

It follows from (39), (37) and (54) that the differential scattering cross-section for 
deep water waves is 

dls = (If(k k,)12) do 

’ (55) 
k: 

2% --oo -02 

= S- (1 + cos 8)’ cot2 ($8) s’ dz’ dz”Q(q, z’, z”) e2ko(z’+z”) dB 

Here S denotes the scattering area, and 

Q(q, z’, z”) = Q(r, z’, z”) exp (- iq - r )  d2r. s 
Two simple models of homogeneous subsurface turbulence may be considered. The 
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first model is the two-dimensional turbulent flow where vorticity does not depend on 
depth. The vorticity correlation function Q(4) in this approximation is a function only 
of the horizontal wave vector q and so we have from (55) 

d o  = -.-..L k2 (1 + cos 0)2 cot2 GO) Q(q) do. 
4 2ng (57) 

Another simple model is the three-dimensional homogeneous turbulence with the 
correlation function 

Q(4, z’, 2”) = Q(4, Z’ - z”). (58)  

In that case we can use new variables 

z+ = z’ + z”, z ~ = 2’ - Z” 

and find from (55) 

S k3 
4 2ng 

d a  = -2 (1 + cos 0)2 cot2 (@) rI Q(4, z-) dz- do. 

(59) 

For further analyses we must know a vorticity spectrum Q(4). In particular, the well- 
known Kolmogorov spectrum for homogeneous and isotropic turbulence may be used 
(Landau & Lifshits 1987). The Kolmogorov spectrum of vorticity may be written in the 
following form : 

where k = (qz + qi + q;); (three-dimensional spectrum). 

Q(k) = Ck-;, (61) 

It is evident however that the total scattering cross-section 

o =  d o  (62) s 
diverges at small scattering angles for the Kolmogorov spectrum (6 l), where 
k = 2k, sin (&9) + 0. And so do some other characteristics of scattering considered 
below. All these scattering characteristics are determined by the large-scale spectrum 
components that are usually anisotropic and inhomogeneous and cannot be described 
by the Kolmogorov universal law. Therefore we should use a particular turbulence 
spectrum limited to large scales. 

6. Surface wave scattering by the turbulence of a boundary layer 
One of the most important types of turbulence in the upper ocean influencing surface 

waves is probably the drift flow turbulence. Owing to the boundary condition (lo), 
derived in the first approximation on the Froude number, a subsurface turbulent flow 
may be considered as a flow near a rigid boundary at z = 0. This permits us to use the 
model of a logarithmic boundary layer (LBL) near a solid surface. 

In the self-similar region of a turbulent drift flow when z 4 L, the correlation 
function depends on the dimensionless variables 6 = ;q(z’ + z”) and x = z”/z ’ .  
Note that the exponent in (55) limits the integration area by the condition: 
[ d q /k ,  = 2sin(@) d 1. Kader (1984) proved that under the condition 6 4 1 the 
correlation functions do not depend on <. Using this fact and the absence of vorticity 
correlation at scales r % L,, we approximate the function Q(4, z’, z”) by the expression 

Q(4, z’, 2”) = @(n, X) H(q - qt). (63) 
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Here n = q /q ,  q, = 2n/L,, v* is the LBL dynamic speed, @(n,x)  is a dimensionless 
function (0 < @ < 1 )  and 

0 if q d 0  
1 if q > O  

is the Heaviside step function. Then employing the approximation (63), from (55)  we 
have 

k i  v i  
47% 

(dn) = S- G(n) ( 1  +COS 0 )2~o t2  (:@)do, 

where 0 > 2 arcsin (q,/2k,) and 

It should be noted that, if q - q,, the LBL spectrum approximation (63) is rough and 
therefore in an area 6' N qJk ,  - 1 the expression (64) is suitable only for qualitative 
estimations. At the same time, if qJk ,  < 6' < 1, (64) gives the right asymptotic form for 
the scattering cross-section : 

The scattering cross-section, although calculated in the single scattering 
approximation, may be used for investigation of some multiple scattering effects such 
as damping of the coherent field component (vk) and transformation of wave angular 
distribution. The Bourret approximation, which implies that all higher terms except the 
first one in the perturbation expansion of the mass operator in Dyson equation are 
neglected (Rytov, Kravtsov & Tatarsky 1978), may be used if scattering fluctuations 
are small enough. It should be emphasized that use of that approximation is not based 
on a specific features of the given Green function and so does not depend on features 
of the scattering medium. For surface wave scattering problems a Froude number may 
be considered as a small parameter. 

It may be proved under the Bourret approximation that the coherent field 
component decreases exponentially along the propagation distance and the space 
damping rate v for the coherent component (the extinction coefficient) is proportional 
to the total cross-section (per unit area) (Rytov et al. 1978) 

For short gravity waves (k ,  L, 9 1 )  the main contribution to the integral (67) is made 
by small angles 0 < 1.  As a scattering angle corresponding to a turbulent scale L is of 
the order OL - (k,L)-l, so the damping of the coherent component is evidently 
determined mainly by large-scale turbulent vortices (k ,  L 9 1) .  Taking into account the 
small value of the angle 6' we can use instead of (67) an approximate formula 

where n, is a unit vector that is orthogonal to the wave vector k,. The dependence of 
von the direction of the wave propagation is a consequence of an LBL anisotropy in the 
horizontal plane. 
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7. Surface wave angular spectrum evolution 
Besides the damping of a coherent wave component, variations of an angular 

spectrum and correlation function due to the scattering are also interesting. This effect 
may compete with other known processes, for example, wind-wave interaction, 
nonlinear wave processes etc. 

The spectrum evolution may be found for the case of practical importance when 
k, L, + 1 and scattering is small at a distance L,. In that case the ‘staircase’ approximation 
may be used. The staircase approximation is based on the use of small turbulent 
fluctuations (small Froude number in our case) and large turbulent scale (k, L, + 1) as 
well. A transfer equation may be derived under this approximation from a 
Bethe-Salpeter equation (Rytov et al. 1978). Under this assumption a typical form of 
a transfer equation for wave intensity J(r, n) may be written 

12. VJ(r,  n) = g(n, n’) J(r,  n’) d2n’ - 2vJ(r, n), (69) s 
where n = (nZ,ny), r = (x, y )  and g(n,n’) is the scattering cross-section in the Born 
approximation. 

We may replace the integration variable in (69) on the transverse angle 6’ and then, 
using the small-angle approximation (66) for the scattering cross-section, we find from 
(69) for a wave propagating along x a transfer equation in the form 

Here we take into account that the minimum scattering angle Omin is determined by 
the maximum scale of a turbulent spectrum qt = 2n/L,. 

To find a solution of the transfer equation it is more convenient to use instead of (70) 
an equivalent equation for the transverse correlation function of the complex wave 
amplitude a(x, y )  

r 
K(R, x) = (a(x,  y )  a*(x, y + R))  = J(8) exp (ik, OR) d(k, 0). J 

Using the Fourier transformation we find from (70) 

where 

Equation (72) has the solution 

which leads to an asymptotic expression for the correlation function: 

corresponding to a distance x where the transverse correlation scale R, for a wave field 
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becomes less than the external turbulence scale L,. For a typical correlation scale R, 
(that is determined on the level e-l) in a plane wave we have from (75) 

- Lt -- g R, = 
8x2k: v i  G(n,) x 47c2Vx' 

The condition k;' 4 R, 4 L, determines the range of distances where (75) is valid: 

(47c2v))-l 4 x 4 kL,(47c2F))-'. (77) 

It should be emphasized that the transverse correlation function in this range does 
not depend on the external turbulence scale and is determined only by LBL features, 
thus being universal for arbitrary turbulent drift flows. 

The wave intensity angular spectrum that corresponds the correlation function (75) 
with the boundary condition K(R,O) = 1 is 

The spectral width e" can be found from (78): 

This expression coincides with the natural definition e" = (k ,  RJ'. 
Thus the correlation scale R, of a plane wave at a distance x = L = (4x2C))-l (that 

also is a characteristic of a coherent component) is of the order of L, and the angular 
spectrum width: e" = (k ,  LJ1.  The angular spectrum becomes significantly wider 
(6 N 1) at a distance 

x N Lo = g[8n2k: 0: G(n,)]-l = (k, L,) L. (80) 

8. Discussion 
When k,  L, 9 1 (which is valid in many important situations), it is possible to derive 

an explicit form of the extinction coefficient v and to calculate the correlation function 
as well as the wave intensity angular spectrum. In that case the damping of a mean 
wave field is determined by large vortices with the scales 1 - L,. The corresponding 
expression (68) gives the dependence of the decrement ii on drift flow parameters and 
on the wavelength. 

The process of transverse correlation evolution and angular spectrum widening for 
a wave that was initially plane can be divided into three stages if k ,  L, 9 1. At distances 
x < L scattering mainly occurs at large vortices with scales 1 N L,. Then the coherent 
component of the wave field is transformed into a random one and the transverse 
correlation scale decreases down to the value - L,. At the second stage that is 
determined by the condition (77), the wave field is incoherent and the angular spectrum 
widening is determined by scattering at vortices with scales that are in the self-similarity 
range h 4 1 4 L,. As a result, the parameters pe and 6 do not depend on the drift flow 
depth and are determined only by the speed u* and the wave propagation direction. 
The angular spectrum width can be measured by remote sensing methods, which makes 
it possible, in principle, to realize remote sensing of drift shear flows. 

Finally, at x > Lo a widening of the angular spectrum occurs. That stage cannot be 
described by the theory developed above. 
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It would be very interesting to make an experimental test of the theoretical results 
found here. We give here some estimates for typical oceanic conditions of multiple 
scattering effects in LBL turbulence that have been considered above. If a wave of 
wavelength h = 30 m propagates in a drift flow with a speed v* = 1 cm s-l and a 
characteristic lengthscale L, = 40 m, the self-similar dynamics of an angular spectrum 
sets in at distances x 2 L = 3 km. The width of the angular spectrum is about 12" at 
that distance. 

It should be noted however that under the condition of moderate or strong wind, 
various competing factors influence the gravity wave propagation. In the first place, 
they are the wave interaction with the atmospheric boundary layer and the nonlinear 
interaction with wind waves. Generally speaking, these effects are comparable with 
scattering by a subsurface turbulence. The effects of scattering considered above 
can manifest themselves in a net form under a light wind with a speed close to the 
threshold of wind wave generation. For instance, considering wind with the speed 
2 m s-l (v* = 0.2 cm s-l) which does not affect waves with wavelengths longer than 
1 m (cf. Phillips 1977) we have the value L = 1 km for a wave with h = 3 m 
and L, = 5 m. 

9. Conclusion 
The scattering amplitude (32) derived in the Born approximation allows us to 

investigate some general properties of surface gravity wave scattering at vortex flows 
and to find the scattering amplitude for some particular localized vortices such as point 
vortices, axially symmetrical vortices, monopole and dipole vortices. The use of the 
Born approximation under the condition of small Froude number seems to be a rather 
weak restriction for cases of practical importance. A very important result found in this 
approximation is that the scattering amplitude is determined by the vertical component 
of the vorticity field. 

Most known vortex flows have a relatively simple vorticity distribution in space. At 
the same time the velocity field for those flows is as a rule more complicated. This 
originates in the well-known fact that the vorticity is a conserving value and is 
transferred by inviscid fluid particles without change (Lamb 1947). In particular, if a 
flow is steady its vorticity is constant along closed streamlines. That is why expressions 
for wave scattering characteristics for a vortex flow in terms of the vorticity of that flow 
are more convenient than use of a velocity field. These characteristics has been 
investigated here for some localized vortex flows, in particular, point vortices. 

Scattering by turbulent vortices seems to be of more geophysical interest. The 
estimations presented above show that any contemporary ocean wave prediction 
model (see Hasselmann et al. 1988) must anyhow take into account the effect of 
wave scattering by subsurface turbulence. For horizontally homogeneous turbulence 
the scattering cross-section is proportional to the vorticity correlation function 
integrated along the subsurface layer of a wavelength depth. The scattering of gravity 
waves by drift flow turbulence has been investigated employing the self-similarity of 
correlation functions. This is possible only if the external turbulence scale L, 
determined by the LBL depth is greater than the wavelength h = 27c/k,. If k, L, - 1, 
the expressions (64), (67) and (73) are suitable for qualitative evaluations. 

The research described in this paper was carried out partially in the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. 
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